Using Capnography to Improve Patient Safety
Kim Kraft BSN RN CPAN
Mercy Hospital St. Louis
St. Louis MO
kim.kraft@mercy.net

Oxygenation vs. Ventilation
• The transport of O2 via the bloodstream to the cells is called Oxygenation
• The movement of air into and out of the lungs and exhaling of CO2 via the respiratory tract is called Ventilation

Pulse Oximetry vs. Capnography
• Pulse Oximetry
 – Oxygen saturation
 – Reflects oxygenation
 – SpO2 changes lag when patient is hypoventilating
 – Reflects change in oxygenation within 5 minutes
 – Should be used with capnography

Pulse Oximetry vs. Capnography
• Capnography
 – Carbon dioxide
 – Reflects ventilation
 – Hypoventilation & apnea detected immediately
 – Reflects change in ventilation within 10 seconds
 – Should be used with pulse oximetry

Why Use Capnography?
• Facilitates patient management by:
 – Providing continuous and non-invasive monitoring of ventilation with three tools
 – Providing early detection of clinically significant or catastrophic events

The Capnogram
• Height shows amount of exhaled carbon dioxide
• Length depicts time
• The shape of a capnogram is identical in all humans with healthy lungs.
• Any deviations in shape must be investigated to determine a cause of the abnormality
Normal Ventilation Waveform
• Normal CO2 waveforms must have all of these components:
 – A zero baseline
 – A rapid, sharp uprise
 – An alveolar plateau
 – A well-defined end-tidal point
 – A rapid, sharp down stroke

Hypoventilation
• Clinical findings:
 – Slow breathing, high EtCO2
• Possible causes:
 – Increased sedation, overmedication
 – Snoring or possible obstruction

Hypoventilation
• Clinical findings:
 – Slow breathing, low EtCO2
 – Followed by deep breath
• Possible causes:
 – Increased sedation
 – Low tidal volume

Partial Obstruction
• Clinical findings:
 – Irregular breathing, possible snoring or audible breathing
 – EtCO2 may be above or below baseline
• Possible causes:
 – Poor head or neck alignment
 – Overmedication or sedation

No Breath
• Clinical findings:
 – Very shallow or no respiratory rate pattern
 – Sudden loss of EtCO2 reading
• Possible causes:
 – No breath or apnea
 – Very shallow breathing
 – Overmedication or sedation
 – Displaced cannula

Hyperventilation
• Clinical findings:
 – Rapid breathing, low EtCO2
• Possible causes:
 – Increase in pain level or splinting
 – Increase in anxiety or fear
 – Respiratory distress or shortness of breath
Why use EtCO2 in the PACU?

- Early warning of hypoventilation, apnea or airway obstruction, malignant hyperthermia
- Use with patient with history of respiratory compromise, such as asthma or COPD to monitor trend and need for breathing treatments and response to treatment
- Verify endotracheal tube placement or monitoring during weaning
- Decrease frequency of arterial blood gases
- Titrate sedation and pain medication

Post-op Applications

- Post operative patients on Patient Controlled Analgesia (PCA) - often starts in PACU
- Bariatric Patients/Obstructive Sleep Apnea (OSA) high risk patients

Patient Safety with PCA

- Patient Controlled Analgesia (PCA) aids patients in balancing effective pain control with sedation
- The risk of patient harm due to medication errors with PCA pumps is 3.5-times the risk of harm to a patient from any other type of medication administration error
- 2004 more deaths with PCA than with all other IV infusions combined
- Due to oversedation and respiratory depression with PCA delivery

Why Use Continuous Monitoring?

- The following patient conditions and alarm states can be observed using continuous EtCO2 and SpO2 monitoring:
 - Opioid-induced apnea: detected by no breath alarm
 - Undiagnosed sleep apnea: detected by no breath alarm
 - Post-op pneumonia/CHF: detected by low oxygen saturation alarm
 - Respiratory depression secondary to opioid overdose detected by all of the following:
 - Low oxygen saturation alarm
 - High EtCO2 alarm
 - Low respiratory rate alarm
 - No breath alarm

Conclusion

- Capnography for sedation, analgesia and postoperative monitoring:
 - Accurately monitors RR
 - Monitors adequate ventilation
 - Monitors hypoventilation due to over-sedation more effectively than pulse oximetry
 - Earliest indicator of apnea and obstruction
 - Adds additional level of safety providing caregiver with objective information to make accurate assessments and timely interventions

References

- Christopher, D.A. Working Smarter with Intelligent Pumps, Pharmacy Solutions, Nov 2008