FUNDAMENTALS OF ANESTHESIA FOR THE PERIANESTHESIA NURSE

MAUREEN F. MCLAUGHLIN, RN, MS, ACNS-BC, CPAN, CAPA ASPAN'S 41ST NATIONAL CONFERENCE APRIL 2022 Session #605/DC 1.25

1

History of the Recovery Room

- England:
- 1751: separate rooms for major surgery
- -1863: separate rooms to recover from anesthesia
- United States:
 - 1918: 1st GA ambulatory surgery
 - 1920's-1930's- increased surgical complexity
 - 1923: John's Hopkins: 3 -bed NS recovery unit
 - 1947: Anesthesia Study Commission of Philadelphia
 - 1/3 preventable postop deaths could be eliminated by improved postoperative nursing care
 - · Specialized nursing, close proximity to OR

2

Pre-operative Preparation

- Including but not limited to:
- Capacity to consent
- Pertinent labs, EKG, cardiac w/u
- Medication history/reconciliation/adjustment
- ? Pre-hab- PT
- Screenings (OSA, suicide, falls, ADLs)
- Consults: cards, pulm, nutrition
- What the patient understands/teaching

3

4

Levels of Sedation

Moderate Sedation

-Airway/ventilation/CV OK

–Purposeful response to verbal or tactile \sim NOT PAIN

- Deep sedation/analgesia
- -Response after painful stimulus
- -Airway maybe needs to be supported
- -Spont ventilation maybe inadequate
- -CV OK

• All provided under the direct supervision of anesthesia provider

- Describes intended anesthetic plan + anesthetic medications
- DOES not describe the level/depth of sedation
- Anesthetic plan ~ aligning patient safety, airway management and successful surgical outcome

9

	ASA Physical Status
ASA 1	Normal healthy patient
ASA 2	Pt. w/ mild systemic disease
ASA 3	Pt. w/ severe systemic disease that limits activity but not incapacitating
ASA 4	Pt. w/ incapacitating systemic disease that is constant threat to life
ASA 5	Pt. is not expected to survive 24 hours w/o the operation
ASA 6	Pt. has passed brain death criteria and is an organ donor
"E"	Emergent pt. w/ unknown or limited history

10

9

Airway Assessment

- Identification of potential for difficult intubation
- Mallampati Airway Classification
- Exam: mouth opened to 50-60 mm
- Interincisor distance ~ FB
- Thyromental distance

15

- Induction agents
- Inhalation agents
- Muscle relaxants
- Opioids
- Dissociative agents
- Reversal agents

14

16

20

22

23

• Impairs muscle contraction

· Binds to postsynaptic receptors

· Block binding of ACh

• Ach is still released- NMDRs compete for receptor sites

NDMR Actions

Nondepolarizing Muscle Relaxants

- Sequence of relaxation: fine to gross motor impairment
- eyes-jaw-hands-limbs and neck-intercostals-diaphragm
- Return of function is in reverse order
- Reversal:
- Natural decay
- · Reversal agents-pharmacologic interventions

25

26

25

Administration:

- Used by itself w/o adjuncts
- Balanced: narcotics, muscle relaxants added to reduce dose of inhalation agent required

Pharmacokinetics

- Inhaled-alveoli-across alveolar-capillary membrane \sim cap bed
- Uptake depends on lipid solubility of agent
- Distribution depends on blood flow
- · Highly perfused: brain, heart, kidney, liver
- Moderately: muscle, skin
- Elimination: determined by blood flow
- Obese pts store anesthetic agents longer

Volatile Inhalational Anesthetics

- · Liquids that evaporate at room temp
- Vaporizer controls amount of liquid is evaporated
- Pts depth of anesthesia is determined by concentration of vapor administered
- Minimum alveolar concentration (MAC)
 - Concentration (%) of anesthetic vapor that prevents muscle movement in 50% of pts in response to surgical incision

28

- Dose dependent CNS depression
- CV- irritability
- Resp:
- Depresses spont. resp
- Obtunds reflexes
- Dulls ventilatory response to hypercarbia, hypoxemia
- Bronchodilation

28

CV Effects of Inhaled Anesthetics

- Decrease in MAP during induction/increase in % gas
 - Peripheral vasodilation
 - Decrease systemic vascular resistance
 - Surgical stimulation off-set decrease
- $\bullet > HR$
- > sympathetic stimulation
- Stimulation of carotid baroreceptors

31

33

32

31

38

- Anticholinesterases ~ neostigmine
- Increases amount of acetylcholine (ACh) at post synaptic membrane
- >>> competition w/ NDMR
- Concentration of Ach >>> than NDMR
- Muscle can now contract; weakness/relaxation dissipates

40

45

- 10 year retrospective review; 160 cases
- 37 related to anesthesia
- Loss of airway on transport
- Loss of airway w/ laryngeal ca; unable to ventilate
- · Extubated after long case; apneic on arrival to PACU
- Known difficult airway; extubated end of case; unable to ventilate-trach. Pt died

44

Recovery room incidents: a review of 419 reports from the Anaesthetic Incident Monitoring Study (AIMS)							
M. T. Kluger' and M. F. M	. Bullock ²	Table 8 Contributing factors in 419 recovery room incidents					
Table 6 Presenting problem in	87 airway incidents	reported to AIMS.					
recovery room incidents reported to AIMS.		Contributing factor	No. (proportion)				
Presenting airway problem	No. (proportion total incidents)	Error of judgement	77 (18%)				
Airway obstruction Laryngospasm	59 (14%) 18 (4%)*	Communication Fault of technique Inadequate patient assessment	57 (14%) 29 (7%) 29 (7%)				
Jaw dislocation Allergy Foreign body (throat pack)	2 (0.5%) 2 (0.5%) 2 (0.5%)	Sick patient Inattention	14 (3%) 11 (3%)				
Failed extubation Failed intubation Endobronchial intubation	1 (0.2%) 1 (0.2%) 1 (0.2%)	Surgical team Lack of equipment	10 (2%) 10 (2%)				
*11 adult; 7 child.		Inexperience Haste Problem with monitor	8 (2%) 8 (2%) 4 (1%)				
		Problem with equipment Fatigue Lack of facility (bed shortage)	3 (1%) 3 (1%) 3 (1%)				
Anaesthesia, 2002, 57 , pages 1060–	1066	Drug labelling Inadequate assistance Unfamiliar environment	2 (0.5%) 2 (0.5%) 2 (0.5%)				

Table 7. Failures and Causes of Adverse Events in Anesthesia of the Selected Studies (N = 21)					
Active Failure	Cause	N	16	Article	
Error	Delay recognizing hemodynamic alterations/anesthetic complications	7	33.3	Moody ²⁴ ; Ruibal ²⁷ ; Cheney ²⁸ ; Davies ³¹ ; Lee ³⁹ ; Roh ³⁸ ; Schulz ⁴¹ .	
	Administration/maintenance inadequate of regional anesthesia	1	4.7	Cook ²⁹ .	
	Malpractice in cardiac arrest care	1	4.7	Davies ³¹ .	
	Incorrect identification of medications	1	4.7	Domino ²² .	
Slip/Lapse	Incorrect execution of regional/ ophthalmic blockades	8	38	Lee ²⁶ ; Davies ³¹ ; Cook ²⁷ ; Mihal ³² ; Orebaugh ³³ ; Szypula ³⁴ ; Clarke ³⁵ ; Rathmell ³⁶ .	
	Medication changes during anesthetic induction	6	28.5	Domino ²² ; Fasting ²³ ; Cook ²⁹ ; Mihai ³² Cranshaw ³⁰ ; Erdmann ⁴⁰ .	
	Difficulty in the control/management of the airway	4	19	Moody24; Cook29; Davies31; Schulz41	
	Professional misuse of equipment	2	9.5	Caplan ²¹ ; Domino ²² .	
	Incorrect puncture of central venous cannulation	1	4.7	Cook ²⁹ .	
Violation	Absence of an oximeter/capnograph	5	23.8	Lee ²⁶ ; Mihai ³² ; Roh ³⁸ ; Lee ³⁹ ; Schulz ⁴¹	
	Inadequate preoperative assessment	-4	19	Domino22; Moody24; Roh38; Schulz41	
	Failure to check equipment	3	14.2	Caplan ²¹ ; El Dawlatly ²⁵ ; Ruibal ²⁷ .	
Latent failure	Communication failures	7	33.3	El Dawlatly ²⁵ ; Ruibal ²⁷ ; Davies ³¹ ; Mihai ³² ; Cook ²⁹ ; Hudson ³⁷ ; Erdmann ⁴⁰ .	
	Fatigue	2	9.5	Hudson ³⁷ ; Erdmann ⁴⁰ .	
	Pressure to perform	1	4.7	Erdmann ⁴⁰ .	
Other conditions	Patient clinical problems	5	23.8	Moody ²⁴ ; El Dawlatly ²⁵ ; Lee ²⁶ ; Davies ³¹ ; Hudson ³⁷ .	
	Equipment failures	3	14.2	Caplan ²¹ : Ruibal ²⁷ : Chenev ²⁸ .	

- Spasms

49

- Respiratory depression +/- somnolence
- Opiates
- NMB
- Residual gas
- · TIVA associated sedation
- Airway trauma/dentition

51

53

- Impaired spontaneous ventilation
- Depression of laryngeal, pharyngeal reflexes
- · Aspiration always a risk
- Dysrhythmogenic effect
- · No residual analgesic effect
- MH risk from triggering agents (not N2O)
- Hypothermia
- d/t introperative heat loss
- Shivering possible- > O2 consumption

Emergency Airway Equipment 52 52

latrogenic Airway Trauma • Oral injuries ~ 5% Dental injuries ~ 1% · Anes consent includes mention of potential injuries • Factors: • Skill of the provider · Medical condition of the patient

- · Emergent intubations
- Non-OR locations
- # of intubation attempts

Vaida, S. (2020). Anesthesiology News, 83-88.

On-going PACU Management

- Somnolence $\sim d/t$ anes, other · Airway concerns
- · Restlessness, agitation, delirium
- · Adequate oxygenation
- Noxious stimuli
- Baseline
- · Pain and comfort
- Multimodal
- Review anes record to align w/ clinical presentation

55

Clinical Presentation, Treatment, and Complications of Malignant Hyperthermia in North America from 1987 to 2006

Larach, M. et al. (2010). Anisthesia & Analysia, 110(2), 498-

- NAMHR: N= 286
- 75% male/70% Caucasian
- 30% muscular build
- Mean age 22; $45\% \le 19$ years old
- · Previous anesthetic/family hx
- 50% had \geq 2 prior unremarkable GA
- 7% increased muscle tone
- Clinical sxs: MMR, hypercarbia, ST, > temp, skin mottling, cyanosis
- Elevated temperature was one of 1st 3 signs

57

Patient Selection

- · Surgical procedure
- Hemodynamic stability
- · Lack of neurological deficits
- · Intact hematologic system
- -Anticoagulant use
- -Platelet dysfunction (liver disease)
- No infection, local or systemic
- No recent spinal trauma (spinal, epidural)
- · Pt consent

59

57

Postoperative Opioid-Induced Respiratory Depression (RD)

Lee, L. et al. (2015). Anesthesiology, 122, 659-665. · Closed claims cases-1990-2009

- · OIRD assoc w/ p-op death, anoxic brain damage w/in 24 hours/op • deemed preventable
- · Inclusion criteria
 - RR < 8/min
 - Somnolence
 - SpO2 < 90% in absence of abnormal baseline
 - · Pinpoint pupils
 - · High dose opioids in opiate-naïve pt
 - · Qualitative observation of RD: snoring
 - · Arrest w/ presumed risk of RD

56

Neuroaxial/Regional Anesthesia

56

58

60

- · Primary anesthetic approach
- Spinal & epidural- interrupts sensory, motor, sympathetic nerve pathways

58

Neuroaxial/Regional Anesthesia

- Render portion of body insensate to painful stimuli
- Potential complications:
- -Nerve trauma
- -Adverse drug event
- -Local anesthetic toxicity
- -Falls d/t alteration motor function
- -PDPH
- -Hemodynamic changes

Spinal Anesthesia

- 1st spinal performed in 1898 by Dr. Bier
- >'ing popularity w/ joints
- Anesthetic solution and/or narcotic injected into intrathecal space ~ lumbar area only
- Baricity: add'n of glucose to make solution heavier than CSF
- Hyperbaric: solution settles to most dependent aspect of subarachnoid space

61

61

- Proprioception
- Return of function is in reverse order

63

Complications

• Postdural puncture headache (PDPH)

• Backache ~ assoc w/ lidocaine spinal;

65

• Total spinal anesthesia

transient

- N/V ~ r/t hypotension; O2, Rx hypotension
- Hypotension ~ sympathectomy d/t blockade
- Urinary retention ~ autonomic blockade of sacral nerves

Spinal vs. epidural administration As illustrated below, a spinal anesthetic is injected into the subarachnoid space and an epidural is injected into the epidural space. Spinal cord Spine Nerve Epidural anaesthetic Spinal anaesthetic 62 62

• Complete sympathetic blockade:

- Bradycardia \sim cardioaccelerator fibers T1-T4 blocked
- UE weakness/numbness
- · Respiratory distress
- <<<< BP
- LOC
- N/V
- RX:
 - O2 ~ possible advanced airway
 - Fluids ~ pressors
- LE elevation
- ~ Caution w/ neo, levo d/t reflex bradycardia

67

69

Complications

71

- Hematoma
- Prolonged/permanent loss of motor/sensation blocked area
- $\bullet > risk \; w/ \; use \; of anticoagulants$
- Careful medication management
- \bullet Ongoing neuro assessment \sim MOTOR function LE
- Immediate MD notification if suspect

Postdural Puncture Headache

• PDPH

- Most often frontal or occipital
- Related to large needle size
- Worsened by sitting or standing
- Onset usually after 24-72 hours
- Rx: hydration, analgesics, position flat
- · Epidural blood patch

68

67

76

Lipid Rescue

- Excess local anesthetic binds w/ lipid emulsion= reduced plasma drug level
- Dose (ASRA guidelines):
- Initial bolus: 20% lipid 1.5 ml/kg rapidly
- Cont. infusion: 0.25 ml/kg/min
- Add" bolus if needed
- Max dose: 10 ml/kg
- ? CPB
- ? ICU

77

Nursing Considerations

- Regional block ~ need add'l analgesics
- Continuous infusions of local anesthetic ~ med safety

74

• D/C teaching \sim when the block wears off

	No. Claim
Local anesthetic toxicity	7
Inadvertent intravenous/absorption	5
Wrong dose	2
Test doses or divided dosing	5
Stroke	6
Prolonged hypotension	5
Beach chair position	4
Uncontrolled preoperative hypertension	1
Premature extubation/hypoxia on PACU Arrival	3
Injection into spinal cord under GA	2
Inadvertent Intrathecal injection	1
Myocardial Infarction	2
Other intraoperative cardiac or respiratory arrest	3
Other damaging events	7

80

82

Question

One of the first indicators of local anesthetic systemic toxicity is:

- a) cardiac arrest
- b) circumoral numbness
- c) hypotension
- d) ventricular tachycardia

Question Your anesthesia provider performs a preoperative airway assessment and determines that the patient has a grade IV view. You interpret this to indicate: a) the patient will be easy to intubate b) potential for a difficult airway

- c) patient will likely need to remain intubated following surgery
- d) the provider was not skilled at evaluating the patient's airway

85

THANK YOU!!! maureen.f.mclaughlin@lahey.org

87

Question Monitored anesthesia care can best be described as:

a) periprocedural/perioperative continuous infusion of propofol

86

- b) deep sedation
- c) anesthesia performed in procedural areas
- d) anesthesia provided by an anesthesia provider

86